Determinants of the Public Debt and the Role of the Natural Resources: A Cross-Country Analysis

Elkhan Richard Sadik-Zada
Ruhr-Universität Bochum and University of Cambridge, Elkhan.R.Sadik-Zada@ruhr-uni-bochum.de

Andrea Gatto
Department of Economic & Legal Studies (DISEG), andrea.gatto@uniparthenope.it

Follow this and additional works at: https://services.bepress.com/feem

Recommended Citation
https://services.bepress.com/feem/paper1263

This working paper site is hosted by bepress. Copyright © 2019 by the author(s).
Determinants of the Public Debt and the Role of the Natural Resources: A Cross-Country Analysis

Elkhan Richard Sadik-Zada, Andrea Gatto
Determinants of the Public Debt and the Role of the Natural Resources: A Cross-Country Analysis

By Elkhan Richard Sadik-Zada, Ruhr-Universität Bochum and University of Cambridge
Andrea Gatto, Department of Economic & Legal Studies (DISEG)

Summary

This paper investigates the major drivers of the public debt growth in 184 countries. The underlying cross-country survey is conducted on the basis of the improved compilation of datasets on the central government debt for 2013. The study finds that oil abundance, economic growth rate, the share of mineral rent in the total revenue, interest rate payments for foreign borrowings, and being a developing country have statistically significant impact on the growth of the public debt. In contrast, defense spending, unemployment rate, and inflation rate do not have a statistically significant positive impact on the public debt rate.

Keywords: Public debt, Oil rent, Mineral rent, Defence spending, Developing countries

JEL Classification: F21, F34, F36, G15, H6, N1, F3

Address for correspondence:
Andrea Gatto
Department of Economic & Legal Studies (DISEG)
Palazzo Pacanowski
Via Generale Parisi, 13
80132 Napoli
Italy
E-mail: andrea.gatto@uniparthenope.it
Determinants of the Public Debt and the Role of the Natural Resources: A Cross-Country Analysis

Elkhan Richard Sadik-Zada¹ Andrea Gatto²

Abstract:
This paper investigates the major drivers of the public debt growth in 184 countries. The underlying cross-country survey is conducted on the basis of the improved compilation of datasets on the central government debt for 2013. The study finds that oil abundance, economic growth rate, the share of mineral rent in the total revenue, interest rate payments for foreign borrowings, and being a developing country have statistically significant impact on the growth of the public debt. In contrast, defense spending, unemployment rate, and inflation rate do not have a statistically significant positive impact on the public debt rate.

JEL Classification: F21, F34, F36, G15, H6, N1, F3

Keywords: public debt, oil rent, mineral rent, defence spending, developing countries

¹ Ruhr-Universität Bochum, Institute of Development Research and Development Policy, Germany. University of Cambridge, Faculty of Economics (Visiting), UK. Mail: Elkhan.R.Sadik-Zada@ruhr-uni-bochum.de.
² Department of Economic & Legal Studies (DISEG), Palazzo Pacanowski - Via Generale Parisi, 13 - 80132, Napoli, Italy. Email: andrea.gatto@uniparthenope.it.
1. Introduction

Sovereign borrowing as a tool of public finance emerged first in the UK after Britain’s Glorious Revolution in 1688 (Pincus and Robinson, 2011). Adding to this, America’s Revolution in 1776 and European Enlightenment of the eighteenth century were major events which led to a strengthening of the rule of law, sanctity of contract and parliamentary checks on the power of the heads of the states (Brautigam, 1992; Ferguson, 2014). This, in combination with the incessant money shortage of the state led to the emergence of the central banking. The money shortage and the rise of the division of powers were the results of the permanent wars taking place between European states inside Europe and outside Europe over the colonies (Kennedy, 2010).

To assist governments in financing the war with France, Britain established 1694 Britain’s Bank of England. In a similar manner, Denmark (1773), France (1800), Austria (1816), Norway (1816), Belgium (1850), Netherlands (1864), Germany (1875), Japan (1882), Italy (1893), Switzerland (1905), the United States (1913), and Canada (1933) established their central banks (Salsman, 2017); this fact produced an impetus for the emergence of public debt as a central instrument of fiscal policy.

Today, public debt is a global phenomenon practiced in most of the countries around the world, whereby developing countries rely more on the external than on the domestic borrowing. This is the result of the underdevelopment of the financial sector in a number of developing and transition economies.

This work aims at proposing a contribution to detect nexuses existing amongst public debt, energy, and military expenditure. The analyses suggest an important role of oil embedment, mineral rent, economic growth rate, interest rate payments for foreign borrowings in developing country in public debt increase. On the other hand, we discover that defense spending, unemployment rate, and inflation rate do not play a major role in augmenting public debt rates.

Rest of paper is organized as follows: Section-II deals with literature review containing studies on sources and determinants of public debt. Section-III talks about major hypotheses of the survey. Section-IV discusses underlying research methodology and data collection. Section-V discusses empirical results. Subsection-VI presents concluding remarks with policy implications.
2. Literature review

2.1 Sources of Public Debt

The International Monetary Fund (IMF) defines debt “as all liabilities that require payments of interest and/or principal by the debtor to the creditor at a date or dates in the future. Thus, all liabilities in the Government Finance Statistics system are debt except for shares and other equity and financial derivatives” (IMF, 2001). Printing money, running down foreign exchange reserves, borrowing abroad, and borrowing domestically are four major forms of fiscal deficit financing (Fischer and Easterly, 1990). Printing money fuels inflation and the seigniorage revenue enabled by such a policy is non-linear inflation. Empirical surveys show that printing money has a very limited leeway for combating the budget deficit and in the same time is very costly for macroeconomic stability and economic growth (Easterly and Schmidt-Hebbel, 1991; Bua et al. 2014).

The literature on public debt, especially for the low-income countries, focuses on the external debt data (Panizza, 2008; Jaimovich and Panizza, 2010). Two factors arise: not only the data availability issue holds, but also the fact that government borrowing in most developing countries was made possible mainly over foreign debt sources. The role of the local debt market to finance budget deficits started to increase in last decade, especially in 2008, during the financial crisis (Bua et al., 2014). Running down the foreign exchange reserves has no inflationary effects. Hence, this policy seems to be more advantageous than increasing the stock of money in the economy. Nevertheless, this policy has its limits and cannot be employed for a substantially long time due to the limits of foreign exchange reserves (Krugman, 1979; Fischer & Easterly, 1990).

Despite this fact, as a short-term policy tool, this strategy could be considered as an appropriate short-term instrument for the emergency and crisis situations. Foreign lending does not create an inflationary pressure on the domestic economy nor leads to crowding out of domestic lending to private sector. This could eventually lead to the appreciation of domestic currency over the increasing demand for the local currency and harm domestic exports (Sachs and Werner, 1995; Rordrik, 2008). Foreign debt financing scales up the pressure on solvency and complicates the exchange rate management (Bua et al., 2014).

Domestic borrowing does not have the inflationary pressure on the economy, nor leads to the appreciation of local currency. The major concerns of domestic borrowing result to be the crowding out effects of private investments by public investments and increasing
domestic interest rates. Domestic borrowing is more common in the countries with developed financial institutions. Thus, for a long time domestic borrowing was latently assumed to be more widespread in the advanced and emerging economies, and much less in the low intensity conflicts (LICs). This opinion was backed by the absence of empirical data on the LICs. This paradigm has changed with the new data on domestic public debt for 36 LICs compiled in Bua et al. (2014). The dataset shows that the substantial share of public debt in these LICs were generated through domestic borrowing. This is attributable to the result of financial liberalization commenced in the late 1980s and early 1990s (Presbitero, 2012). Based on the dataset built by Bua et al. (2014), it is appreciable as well a slight increase of the already substantial domestic borrowing as the source of public debt (Figure-1). Domestic debt has increased from 12.3% in 1996 to 16.2% in 2011. The dataset presented in Presbitero (2012) yields the same result.

In addition, Figure-1 also shows the evolution of external debt in the LICs. There has been a steady decline of external debt ratio over the period 1996-2008, from 72 to 23% in 2011. After 2008, this ratio did not change significantly.

It must be mentioned that domestic debt, especially in developing countries with high inflation rates, is mostly issued in foreign currencies. A textbook case is Zimbabwe during hyperinflation. During the years of hyperinflation, Zimbabwe issued the majority of debt obligations in foreign currencies. However, this is not a problem happening solely to countries experiencing hyperinflation: the overwhelming majority of the LICs issue their public obligations in the currencies which dominate in the international financial and trade relations – i.e. US Dollars, Euro, and Yuan. This is an additional burden on the sovereign default risk, because the local governments are not able to control the factors determining the volatility of foreign currency (Mupunga & Le Roux, 2016).

![Figure-1](https://services.bepress.com/feem/paper1263)

Figure-1. Domestic and External Public Debt (as % of GDP), 1996-2011

Source: Bua et al. (2014)
2.2 Determinants of the Public Debt

Forslund et al. (2011) identify six major categories determining the composition of the public debt in developing countries. These are: (1) macroeconomic imbalances; (2) country size and the level of development; (3) crises and external shocks; (4) openness; (5) exchange rate regime. Macroeconomic imbalances category encompasses inflation, current account balance, level of total public debt and exchange rate misalignment. The second category, country size and level of development is related to indicators such as GDP, per capita income, M2 over GDP, and institutional quality. The third category, crises and external shocks, captures the crisis situations related to a sovereign default and other impulsive changes in the current macroeconomic situation. The fourth category sketches trade and capital account openness. The last category, exchange rate regime, is related to the fixed or floating exchange rates. Karagol and Sezgin (2004), Sezgin (2004), Dunne et al. (2004a, b), Narayan and Narayan (2005), Ahmed (2012), Anfofum et al. (2014), Muhanyi and Ojah (2014), Azam and Feng (2015), Karagöz (2018) detect a positive causal relationship between defense expenditure as an important driver of the public debt.

Apart from external debt, military spending is tight in the long-run with economic growth and investment (Shahbaz et al., 2016), whereas negative unidirectional causality emerges investigating the relationship from defense spending to economic growth (Shahbaz and Shabbir, 2012); military spending is connected with investment and trade openness, whereas it is negatively correlated with interest rate (Tiwari and Shahbaz, 2012). It is also reputed that increases in defence spending reduces the pace of economic growth, while current economic growth is connected with growth of previous periods, and that non-military expenditures rises can boost economic growth (Shahbaz et al., 2013).

The relationship between oil abundance and public debt issues has not been yet studied exhaustibly. Despite the intuition that the economies with substantial

3 Money supply measure, as defined by the Federal Reserve.

![Figure-2. Total Public Debt to GDP, 1979-2010 Average Source: Arias and Restrepo-Echavarria (2016) and WB (2018).](image-url)
petroleum revenues should have a lower public debt share, and consequently a lower sovereign default risk (Sadik-Zada, 2016), this ascertainment not generally valid. Hamann et al. (2016) and Arias and Restrepo-Echavarria (2016) show that this is by far not the case. Figure-2 depicts the average public debt for 25 net oil exporters between 1979 and 2010.

The cross-country average public debt to GDP ratio is 50%, ranging from 8% (UAE) to 179% (Sudan). As shown on Figure-3, only 8 of 25 countries did not have default episodes (Borzenstein and Panizza, 2008, Arias and Restrepo-Echavarria, 2016). The major problem in the public finance of the oil-producing economies is the volatility of oil prices. Increasing oil prices lead to the rising oil extraction and higher GDP growth rates, improvements of trade balance and current accounts, lower sovereign risk perception, and reduce the default risk. In the phases of shrinking oil prices, the opposite happens, and the default risk increases substantially (Arias and Restrepo-Echavarria, 2016).

3. Theoretical Framework and Hypotheses

Fiscal policy targets do stimulate the economy especially during or before a recession. The constitutive feature of the recession is the negative growth rate at least for six months (Sadik-Zada, 2000 and 2016). Thus, we assume that especially in the times of very low or negative growth rates the governments employ public debt as an anticyclical stimulation instrument. Based on this assumption, we test the following hypothesis:
Hypothesis 1: *Economic growth has a negative growth effect on public debt.*

Armed with the same logic, we assume that especially in the recession phases with high pressure on job market, governments employ public debt as a tool to compensate the recessive impulses by the positive fiscal impulses and to curb job market. To test for the relationship between unemployment rate and public debt, we test the following hypothesis:

Hypothesis 2: *There is a positive relationship between unemployment rate and public debt.*

To combat recession, governments increase public investments mainly financed over public debt. This is especially the case of recession phases due to decreasing tax revenues. To assess the relationship between public debt and gross capital formation, we test the following hypothesis:

Hypothesis 3: *There is a positive relationship between gross capital formation (GCF) and public debt ratio in the short run.*

Increasing defense spending, especially in the developing countries, does not have strong positive effects on economic growth and is not considered as an anticyclical instrument. In fact, the majority of developing countries import most armament from the advanced economies. Increasing or high share of the defense spending as a budget item is a sign for the existence of the security risks. In the next hypothesis, we test for the effect of the defense spending on public debt.

Hypothesis 4: *There is positive relationship between defense spending and public debt ratio.*

Mohaddes and Raisi (2017) have shown that the existence of the sovereign wealth funds (SWFs) in the petroleum rich countries also serve actively as an anticyclical tool. The availability of the transfers from these SWFs to the state budgets could lead to fungibility between these transfers and the public debt. Thus, we test this in the following hypothesis:
Hypothesis 5: Petroleum (mineral) abundance has a negative impact on the public debt ratio.

In order to take account for the structural differences between advanced and developing/transition economies, we include a dummy variable, which takes the value 1 for all developing and transition economies and 0 for the advanced economies. This variable captures also partly the diverging effect of the defense sector on the rest of the economy in these two groups.

Hypothesis 6: There is a difference between developing/transition and advanced economies in public debt levels.

The countries with a high level of public debt have a higher share of the interest rate as a share of public debt than the countries with a moderate public debt. We also want to assess the impact of the indebtedness on the level of additional indebtedness and employ the interest rate payments as an independent variable.

Hypothesis 7: There is a positive relationship between interest rate payments and the public debt share.

4. Research Design

4.1 Data

The data on public debt have become more comprehensive, more accurate, and more readily available in recent years due to the efforts of Abbas et al. (2011), Jaimovich and Panizza (2010), and Bova et al (2014). Bua et al. (2014), introduced a new dataset on the stock and structure of domestic public debt in 36 Low-Income Countries over the period 1971-2011. This dataset provides not only the information on the stock of public debt and interest payments, but also encompasses the information on maturity, currency composition, creditor base, and type of the financial instruments. For our analysis, we employ the data compilation provided by the last version of the World Development Indicators (2018) which incorporates the data sources mentioned above. We should stress
our data collection choice. For the sake of completeness, we take the data of 2013. This choice is driven by data availability, and to avoid data loss or imputation: we chose the most recent, standard, and representative year in terms of data, 2014, presenting 2017 a lot of missing values. The years 2013 to 2015 are more complete. Nevertheless, to avoid a structural break, we take the observations for 184 countries before the dramatic shrinkage of the oil prices in November 2014.

4.2 Methodology

For the assessment of the major determinants of the public debt, this study applies a cross-country linear regression approach with data for 184 countries. To interpret the regression coefficients as elasticities, i.e. in percentages and to normalize the data, the natural logarithm of the dependent and all the independent variables are taken. To test for the existence of heteroscedasticity Breush-Pagan test was applied.4 The test result indicates the absence of heteroscedasticity in the dataset (see Appendix 1). To assess the differences in the level of public debt between the advanced and developing economies, we employ a dummy-variable strategy. We classify all the EU-member states and all the high-income countries with a per capita income over 30000 in constant 2010 US Dollars as developed countries. Except for the UAE and Qatar, all the Gulf States are classified as developing countries.

The natural logarithm (\(ln\)) of the share of the central government debt in GDP (\(lnGDP\)) is the dependent variable; \(ln\) of the inflation rate (\(lnINFLAT\)), \(ln\) of the unemployment rate projected by the International Labour Organization (ILO), \(ln\) of the unemploymenr rate (\(lnUEMP\)), \(ln\) of the share of the oil rents as a share of GDP (\(lnOilRent\)), \(ln\) of the share of the defence spending as a share of GDP (\(lnDEFENCE\)), gross capital formation as a share of GDP (\(lnINV\)), \(ln\) of the mineral rent as a share of GDP (\(lnMINERAL\)) and \(ln\) of the interest payment for the public debt (\(lnINTEREST\)) are the independent variables.

\[
Y_i = \beta_0 + \beta_1 lnGDP + \beta_2 lnINFLAT + \beta_3 lnUEMP + \beta_4 lnOilRent + \beta_5 lnDEFENCE + \\
+ \beta_6 lnINV + \beta_7 lnMINERAL + \beta_8 lnINTEREST + \varepsilon_i
\] (1)

The log-log character of the regression model enables the interpretation of the coefficients in percentages.

4 Heteroscedasticity refers to the circumstance in which the variability of a variable is unequal across the range of values of a second variable that predicts it (cf. Wooldridge, 2013).
5. Results

In the framework of the regression analysis, seven regression equations were conducted. The first estimation is a bivariate regression with only GDP growth ($\text{lng}Y$) as the explanatory variable. Based on the regression output, 1% increase of economic growth leads to -3.32% decrease on public debt. In all the 7 estimations $\text{lng}Y$ has a statistically negative impact on the public debt. The coefficient of $\text{lng}Y$, β_1, varies between -2.85% and -6.34%. This indicates the negative nexus between the GDP growth and the level of public debt and corroborates the Hypothesis 1 (Economic growth has a negative growth effect on public debt). Figure-4 and the fitted linear regression line (fitted values) also indicate a negative relationship between the growth rate of GDP and public debt ratio.

![Figure-4. Public debt and the growth rate of GDP, 2013.](image)

Source: Authors’ illustration.

Inflation rate (lnINFLAT), unemployment rate (lnUEMP), and defence spending (lnDEFENCE) have no statistically significant impact on the public debt. This result rejects Hypothesis 2 and shows that there is no statistically significant relationship between unemployment (inflation) and the level of public debt. The share of oil rent (lnOILRent) and mineral rent as a share of GDP (lnMINERAL) has a statistically significant negative impact on the dependent variable (equations (4) and (5) for oil and equation (6) for mineral rent).

In Equation (6) we included gross capital formation as a share of GDP (lnINV) as a control variable to test Hypothesis 3. Estimation output rejects this hypothesis and shows
that there is no statistically significant relationship between gross capital formation, which is a proxy for total investment share in GDP, and public debt.

The coefficient of $\ln\text{OilRent}$ varies between (-0.177) and (-0.196). This implies that an increase of the oil revenues by 1% leads to a decrease of the public debt by 1.77 (1.96%) (Equations (4) and (5)). **Figure-5** also indicates the negative relationship between oil rent as a share in total public revenue and the public debt.

![Figure-5](image)

Figure-5. Public debt and oil rent as a share of total public revenue, 2013.
Source: Authors’ illustration.

$\ln\text{MINERAL}$, another proxy for the natural resource abundance, also has a statistically significant negative impact on the level of public debt: 1% increase of the mineral rent as a share of GDP leads to 0.05-0.06% decrease of public debt. We can observe that oil abundance has a much stronger impact on public debt than mineral rent. These results corroborate the Hypothesis 4. This implies a positive relationship between resource abundance and fiscal stability. Interest payments (public debt related) as a share of total revenue have a statistically significant positive impact on the level of public debt: An increase of the interest payments by 1% lead to an increase of the public debt by 0.593%.
In order to control for the difference between developing and developed countries we add a dummy variable, DEVELOPING, which take the value 1 if the country in the dataset is a developing or transition economy, and 0 if the country is a developed country with high income level or an EU-member country. We find that being a developing country has a statistically significant negative impact on public debt. Being a developing country leads on average to 6,5% decrease of public debt as a share of GDP.

As shown in the estimation output sketched in Table-1, the coefficients of determination in the estimations range between 16,3 and 75,5%. This implies that all the regression models explain a substantial share (at least 16,3% and at utmost 75,5%) of the variations of the dependent variable, i.e. lnDebt.

6. Concluding remarks
Cross-country regression survey shows that a greater growth rate of the aggregate GDP has a statistically negative impact on the public debt as a share of GDP. This effect vanishes if we include the developing country dummy in the Equation (8). Unemployment has a statistically significant impact on the level of public debt only in the last regression Equation (8). Interest payments also have a statistically significant positive impact on the level of public debt (Equations (7) and (8)). Oil rent as a share of total revenue (Equations (4) and (5)) has a statistically significant negative impact on public debt. The same is true for the mineral rent as a share of total revenue (Equations (6) and (7)). Defense spending does not have a statistically significant impact on the level of the public debt (see Appendix-2).

Future studies might take into account further research questions arising from this study. Upcoming research may want to examine more closely endogeneity and eventual multicollinearity issues. These problems might be solved by corroborating the estimation results making use of diverse techniques and tests. For this purpose, further elaboration of the econometric strategy would benefit the validity of the analyses undertaken.
References
World Bank (2018). World Development Indicators.
APPENDIX-1: Heteroskedasticity and Multicollinearity Tests

- Heteroskedasticity Test
 . estat hettest

 Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
 Ho: Constant variance
 Variables: fitted values of lnDebt

 \[
 \text{chi2}(1) = 1.17 \\
 \text{Prob > chi2} = 0.2786
 \]

 The heteroscedasticity test shows that there is no heteroscedasticity because the P-value 0.2786 is greater than 0.005.

- Heteroskedasticity Test Model 5
 . hettest

 Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
 Ho: Constant variance
 Variables: fitted values of lnDebt

 \[
 \text{chi2}(1) = 3.91 \\
 \text{Prob > chi2} = 0.0480
 \]

 The heteroscedasticity test for model 5 shows that there exists heteroscedasticity for model 5.

- Multicollinearity Test
 . vif

<table>
<thead>
<tr>
<th>Variable</th>
<th>VIF</th>
<th>1/VIF</th>
</tr>
</thead>
<tbody>
<tr>
<td>lnPCI</td>
<td>3.24</td>
<td>0.308761</td>
</tr>
<tr>
<td>lnINFLAT</td>
<td>2.67</td>
<td>0.374333</td>
</tr>
<tr>
<td>lnUEMP</td>
<td>1.70</td>
<td>0.587419</td>
</tr>
<tr>
<td>lngY</td>
<td>1.68</td>
<td>0.594168</td>
</tr>
<tr>
<td>lnDEFENCE</td>
<td>1.55</td>
<td>0.647016</td>
</tr>
<tr>
<td>lnINV</td>
<td>1.42</td>
<td>0.704009</td>
</tr>
<tr>
<td>lnMINERAL</td>
<td>1.24</td>
<td>0.807020</td>
</tr>
<tr>
<td>Mean VIF</td>
<td>1.93</td>
<td></td>
</tr>
</tbody>
</table>

 The rule of thumb: If all vif-values are less than 10 then it can be concluded that there is no multicollinearity in the dataset.
APPENDIX-2: Regression Estimations with lnDEFENCE

In all three estimations the natural defence spending as a share of GDP is not statistically significant (p-values are greater than 0.005, i.e. 5%). Thus, the positive coefficient values do not lead to the conclusion that the effect is positive.

In all three estimations the natural defence spending as a share of GDP is not statistically significant (p-values are greater than 0.005, i.e. 5%). Thus, the positive coefficient values do not lead to the conclusion that the effect is positive.

In all three estimations the natural defence spending as a share of GDP is not statistically significant (p-values are greater than 0.005, i.e. 5%). Thus, the positive coefficient values do not lead to the conclusion that the effect is positive.
APPENDIX-3: Description of the Dataset

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Type</th>
<th>Format</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>CountryName</td>
<td>str52</td>
<td>%52s</td>
<td>Country Name</td>
</tr>
<tr>
<td>CountryCode</td>
<td>str3</td>
<td>%9s</td>
<td>Country Code</td>
</tr>
<tr>
<td>YR2013Central-debt</td>
<td>double</td>
<td>%10.0g</td>
<td>2013 [YR2013] - Central government debt, total (% of GDP) [GC.DOD.TOTL.GD.ZS]</td>
</tr>
<tr>
<td>D</td>
<td>double</td>
<td>%10.0g</td>
<td>2013 [YR2013] - Central government debt, total (current LCU) [GC.DOD.TOTL.CN]</td>
</tr>
<tr>
<td>YR2013Oilrent-f</td>
<td>double</td>
<td>%10.0g</td>
<td>2013 [YR2013] - Oil rents (% of GDP) [NY.GDP.PETR.RT.ZS]</td>
</tr>
<tr>
<td>YR2013Official-exchange-rate</td>
<td>double</td>
<td>%10.0g</td>
<td>2013 [YR2013] - Official exchange rate (LCU per US$, period average) [PA.NUS.FCR]</td>
</tr>
<tr>
<td>YR2013GDPgrow-u</td>
<td>double</td>
<td>%10.0g</td>
<td>2013 [YR2013] - GDP growth (annual %) [NY.GDP.MKTP.KD.ZG]</td>
</tr>
<tr>
<td>YR2013GDPperc-a</td>
<td>double</td>
<td>%10.0g</td>
<td>2013 [YR2013] - GDP per capita (constant 2010 US$) [NY.GDP.PCAP.KD]</td>
</tr>
<tr>
<td>I</td>
<td>double</td>
<td>%10.0g</td>
<td>2013 [YR2013] - GDP per capita (constant LCU) [NY.GDP.PCAP.KN]</td>
</tr>
<tr>
<td>YR2013Grossfi-formation</td>
<td>double</td>
<td>%10.0g</td>
<td>2013 [YR2013] - Gross fixed capital formation (annual % growth) [NE.GDI.FTOT.KD]</td>
</tr>
<tr>
<td>K</td>
<td>double</td>
<td>%10.0g</td>
<td>2013 [YR2013] - Gross fixed capital formation (% of GDP) [NE.GDI.FTOT.ZS]</td>
</tr>
<tr>
<td>YR2013Grosssa-s</td>
<td>double</td>
<td>%10.0g</td>
<td>2013 [YR2013] - Gross savings (% of GDP) [NY.GNS.ICTR.ZS]</td>
</tr>
<tr>
<td>YR2013Undisbursed</td>
<td>double</td>
<td>%10.0g</td>
<td>2013 [YR2013] - Undisbursed external debt, official creditors (UND, current US$)</td>
</tr>
<tr>
<td>N</td>
<td>double</td>
<td>%10.0g</td>
<td>2013 [YR2013] - Undisbursed external debt, private creditors (UND, current US$)</td>
</tr>
<tr>
<td>O</td>
<td>double</td>
<td>%10.0g</td>
<td>2013 [YR2013] - Undisbursed external debt, total (UND, current US$) [DT.UND.DPPG]</td>
</tr>
<tr>
<td>YR2013Unemplo-o</td>
<td>double</td>
<td>%10.0g</td>
<td>2013 [YR2013] - Unemployment, total (% of total labor force) (modeled ILO estima)</td>
</tr>
<tr>
<td>Q</td>
<td>double</td>
<td>%10.0g</td>
<td>2013 [YR2013] - Unemployment, total (% of total labor force) (national estimate)</td>
</tr>
<tr>
<td>YR2013Inflati</td>
<td>double</td>
<td>%10.0g</td>
<td>2013 [YR2013] - Inflation, consumer prices (annual %)</td>
</tr>
</tbody>
</table>
APPENDIX-3: continued

<table>
<thead>
<tr>
<th>Variable</th>
<th>Type</th>
<th>Format</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>YR2013Inflation</td>
<td>double</td>
<td>%10.0g</td>
<td>2013 [YR2013] - Inflation, GDP deflator (annual %) [NY.GDP.DEFL.KD.ZS]</td>
</tr>
<tr>
<td>YR2013Informal</td>
<td>double</td>
<td>%10.0g</td>
<td>2013 [YR2013] - Informal employment (% of total non-agricultural employment) [SL]</td>
</tr>
<tr>
<td>U</td>
<td>double</td>
<td>%10.0g</td>
<td>2013 [YR2013] - Inflation, GDP deflator: linked series (annual %) [NY.GDP.DEFL.K]</td>
</tr>
<tr>
<td>YR2013Interest</td>
<td>double</td>
<td>%10.0g</td>
<td>2013 [YR2013] - Interest payments on external debt, public and publicly guarantee</td>
</tr>
<tr>
<td>W</td>
<td>double</td>
<td>%10.0g</td>
<td>2013 [YR2013] - Interest payments (% of revenue) [GC.XPN.INTP.RV.ZS]</td>
</tr>
<tr>
<td>X</td>
<td>double</td>
<td>%10.0g</td>
<td>2013 [YR2013] - Interest payments on external debt, total (INT, current US$) [DT]</td>
</tr>
<tr>
<td>Y</td>
<td>double</td>
<td>%10.0g</td>
<td>2013 [YR2013] - Interest payments on external debt (% of exports of goods, serv)</td>
</tr>
<tr>
<td>YR2013Military</td>
<td>double</td>
<td>%10.0g</td>
<td>2013 [YR2013] - Military expenditure (% of GDP) [MS.MIL.XPND.GD.ZS]</td>
</tr>
<tr>
<td>YR2013Mineral</td>
<td>double</td>
<td>%10.0g</td>
<td>2013 [YR2013] - Mineral rents (% of GDP) [NY.GDP.MINR.RT.ZS]</td>
</tr>
<tr>
<td>lnDebt</td>
<td>float</td>
<td>%9.0g</td>
<td></td>
</tr>
<tr>
<td>lnOilRent</td>
<td>float</td>
<td>%9.0g</td>
<td></td>
</tr>
<tr>
<td>lngY</td>
<td>float</td>
<td>%9.0g</td>
<td></td>
</tr>
<tr>
<td>lnPCI</td>
<td>float</td>
<td>%9.0g</td>
<td></td>
</tr>
<tr>
<td>lnINV</td>
<td>float</td>
<td>%9.0g</td>
<td></td>
</tr>
<tr>
<td>lnUEMP</td>
<td>float</td>
<td>%9.0g</td>
<td></td>
</tr>
<tr>
<td>lnDEFENCE</td>
<td>float</td>
<td>%9.0g</td>
<td></td>
</tr>
<tr>
<td>lnINTEREST</td>
<td>float</td>
<td>%9.0g</td>
<td></td>
</tr>
<tr>
<td>lnMINERAL</td>
<td>float</td>
<td>%9.0g</td>
<td></td>
</tr>
<tr>
<td>lnINFLAT</td>
<td>float</td>
<td>%9.0g</td>
<td></td>
</tr>
</tbody>
</table>

Sorted by:

Note: dataset has changed since last saved
NOTE DI LAVORO PUBLISHED IN 2019

3. 2019, ET Series, Edilio Valentini, Paolo Vitale, Uncertainty and Risk-aversion in a Dynamic Oligopoly with Sticky Prices
