Date of This Version
8-1-2025
Abstract
The transition to a zero-emission vehicle fleet represents a pivotal element of Europe’s decarbonization strategy, with Italy’s participation being particularly significant given the size of its automotive market. This study investigates the potential for battery electric cars (BEVs) to drive decarbonization of Italy’s passenger vehicle fleet, focusing on the feasibility of targets set in the National Integrated Plan for Energy and Climate (PNIEC). Leveraging artificial neural networks, we integrate macroeconomic indicators, market-specific variables, and policy instruments to predict fleet dynamics and identify key factors influencing BEV adoption. We forecast that while BEV registrations will continue growing through 2030, the growth rate is projected to decelerate, presenting challenges for meeting ambitious policy targets. Our feature importance analysis demonstrates that BEV adoption is driven by an interconnected set of economic, infrastructural, and behavioral factors. Specifically, our model highlights that hybrid vehicle registrations and the vehicle purchase index exert the strongest influence on BEV registrations, suggesting that policy interventions should prioritize these areas to maximize impact. By offering data-driven insights and methodological innovations, our findings contribute to more effective policy design for accelerating sustainable mobility adoption while accounting for market realities and consumer behavior.
Recommended Citation
Bonacina, monica; Demir, Mert; Sileo, Antonio; and Zanoni, Angela, "What Hinders Electric Vehicle Diffusion? Insights from a Neural Network Approach" (August 01, 2025). Fondazione Eni Enrico Mattei Working Papers. Paper 1474.
https://services.bepress.com/feem/paper1474